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CRITERIA FOR THE SEPARATION OF UNSTEADY

IDEAL FLUID FLOW PAST A SMOOTH AIRFOIL

UDC 532.5:533.6D. N. Gorelov

Criteria for the separation of unsteady flow past a closed smooth airfoil are studied using the ideal
fluid model and the Brillouin–Villat criterion. The necessary separation conditions are formulated.
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The problem of separated flows past bodies has been one of the main problems in hydrodynamics for more
than hundred years. Interest in this problem is motivated not only by its importance (almost all flows past bodies
are of separation nature) but also by the extreme complexity and great variety of flow separation phenomena.
Despite extensive research, the problem of separated flows is still far from being solved. The most general model
of separated flows must take into account fluid viscosity and compressibility and the unsteady nature of the flow.
The use of such a model is limited by its complexity and serious computational difficulties. Therefore, use has been
made of simpler models.

The model of two-dimensional separated incompressible ideal fluid flow past an open cavity was first con-
sidered by Helmholtz (1868) and Kirchhoff (1869). Subsequently, this flow model was complicated and the class of
airfoil contours [1–3] was extended. Flow separation was modeled by a line of tangential velocity discontinuity. The
point of contact of this line with the airfoil contour defines the flow separation point, which is considered specified.
It has been shown that at the separation point, the tangential discontinuity line should have finite curvature (the
Brillouin–Villat criterion [1]).

The model of unsteady separated viscous flow past bodies (see, for example, [3–6]) has been studied most
extensively. In this model, separated flow arises as a result of boundary-layer separation. The separation condition
is the vanishing of the viscous drag force on the body surface, which under a positive pressure gradient leads to
return motion of the fluid (the Prandtl criterion).

Real separated flows have a distinct unsteady nature. Therefore, they should be studied using unsteady flow
models. Experimental and theoretical studies [6] have shown that in unsteady viscous flows, flow separation occurs
not on the body surface but within the boundary layer at the point where the drag force and the longitudinal fluid
velocity vanish simultaneously (the Moore–Rott–Sears criterion). Limited theoretical results have been obtained for
the model of unsteady separated viscous flows, primarily using methods of asymptotic theories [6, 7]. The model
of viscous–inviscid separated flows proposed by Sears turned out to be more promising [8]. In this model, fluid
viscosity is taken into account only in the unsteady boundary layer, and outside it and outside the vortex wakes
trailing from the body, the flow is considered potential. Vortex wakes are replenished by the wakes formed in the
boundary layer, and the flow separation point is defined by the Moore–Rott–Sears criterion [9].

Difficulties arise in modeling unsteady separated flows of an ideal fluid. In this case, the position of the
separation point is uncertain. The absence of fluid viscosity prevents the use of the Moore–Rott–Sears criterion, while
other conditions for determining the separation point of an ideal fluid flow are not yet available. S. N. Postolovskii
approached the solution of this problem. In his dissertation devoted to two-dimensional unsteady separated inviscid
incompressible flows (1970), he chooses the initial position of the flow separation point using the minimum pressure
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Fig. 1. Separation of two vortex wakes from a smooth airfoil.

condition. At the separation point, the Brillouin–Villat criterion is assumed to be satisfied, the velocity of the
separation point is set equal to the fluid velocity at the salient point between the vortex sheet and the airfoil, and
continuity of both the pressure and the tangential component of the pressure gradient is required for transition
through the vortex sheet. Calculations of separated flow past a circular cylinder using this model are in good
agreement with theoretical and experimental data of other authors [10].

In the present paper, we develop Postolovskii’s idea of a relationship between the flow separation point with
the pressure minimum on the airfoil in the flow. The necessary conditions for the separation of an unsteady ideal
fluid flow past an airfoil are formulated and used to derive a nonlinear differential equation for the velocity of motion
of the separation point along the airfoil.

1. We consider ideal incompressible flow past a smooth closed airfoil L in Cartesian coordinates Oxy. It is
assumed that before the time t = 0, the flow past the airfoil L is steady (with a velocity v∞ at infinite distance
from the airfoil) and continuous and that at t ≥ 0, the fluid motion around L becomes unsteady and separated. At
t > 0, the points of the airfoil can move at a velocity U(s, t), where s is the arc coordinate reckoned from a certain
specified point clockwise along the airfoil. The velocity U should satisfy the condition of zero integral of U(s, t) over
the closed airfoil contour L. Physically, this condition implies that for the motion of the points of the contour, the
contour length and the volume inside it are conserved. Flow separation occurs in the form of one or several vortex
wakes trailing from the airfoil, which are modeled by lines Lwk(t) (k = 1, 2, . . .) of tangential velocity discontinuity.
The point of contact of the vortex wake Lwk with the contour L defines the flow separation point, which eventually
can move along the contour. The arc coordinate of this point will be denoted by s∗k(t) (k = 1, 2, . . .) (see Fig. 1).

We note that the vortex wake line Lwk is a cut whose edges L+
wk and L−

wk are the boundaries of the fluid
flow region. For the separated flow model with two vortex wakes Lw1 and Lw2 trailing from the airfoil presented in
Fig. 1, the flow separation points have the arc coordinates s = s∗1 − 0 and s = s∗2 + 0. On the vortex wake Lw1,
the streamline of the relative fluid motion that passes through the flow separation point s∗1−0 ∈ L continues along
the edge L+

w1 of the cut Lw1. At the other edge L−
w1 of the cut, the streamline of the relative motion arrives from

the contour L at the point s = s∗1 + 0. A similar flow pattern is observed in the vicinity of the separation point of
the vortex wake Lw2.

In passing through the vortex wakes Lwk, the hydrodynamic pressure and the normal fluid velocity do not
vary whereas the tangential velocity component undergoes a discontinuity, whose size γwk is not known beforehand.
The shapes of the vortex wakes Lwk, including the position of the separation points, are also unknown. All
these unknown functions influence each other in a nonlinear manner and can be determined only by solving the
corresponding initial-boundary problem related to the separated unsteady flow past the airfoil.
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2. In considering the model of unsteady separated flow of an ideal fluid past a smooth airfoil, one needs
to know both the flow separation points (the point of detachment of the vortex wakes) and the velocities of their
motion along the airfoil contour. To determine them, it is necessary to formulate the corresponding flow separation
conditions.

In real flows, flow separation occurs as a result of interaction of the viscous drag forces, the fluid inertia
forces, and the hydrodynamic pressure gradient. In this case, in unsteady flows, as is noted in [6], the separation
occurs not from the body surface but outside it in the flow region where the viscous drag forces become far smaller.
This allows one to hope for a successful application of the ideal fluid model in studies of unsteady separated flows.

Let us consider physical factors that influence the separation of unsteady ideal fluid flow. The main factor
responsible for the separation is probably the pressure gradient, or, to be exact, its tangential component ∂p/∂s,
whose magnitude determines the level of the fluid inertia forces along the contour L. At the point of the contour
where ∂p/∂s = 0, the tangential component of the fluid inertia force also vanishes. This gives rise to a state of
undetermined equilibrium, and only a certain additional impulse is needed to induce flow separation. Such an
impulse can be a pressure rise behind the examined point, which changes the sign of the inertia forces and can cause
return fluid flow.

In view of the above remarks, we formulate conditions that should be satisfied in the vicinity of the separation
point of unsteady flow past a smooth airfoil.

1. At the flow separation point, the tangential component of the pressure gradient vanishes. In the case of
two separation points (see Fig. 1), this condition becomes

lim
s→s∗1−0

∂p

∂s
= 0, lim

s→s∗2+0

∂p

∂s
= 0. (1)

2. At the flow separation point, the vortex wake Lwk has a common tangent with the contour L (the
Brillouin–Villat criterion). If this condition for Lw1 is satisfied, the streamlines for the relative motion of the fluid
have a finite curvature at the separation point s∗1 − 0 and an infinitely large curvature at the point s∗1 + 0 at
which the streamline of the relative motion forms a return point. According to this, at the point s∗1 +0 the relative
fluid velocity vanishes. For the vortex wake Lw2, the pattern of the relative motion becomes opposite: at the point
s∗2 + 0, the streamline has a finite curvature, and at the point s∗2 − 0, the velocity is equal to zero.

In the case of violation of the Brillouin–Villat criterion, a vortex wake does not arise since the line Lwk and
the contour L form salient points at which the relative fluid velocity is equal to zero and a velocity discontinuity is
absent.

3. The flow line separation is directed toward increasing pressure along the contour. This condition is a
constituent part of the Prandtl criterion for the separation of viscous fluid flow.

We note that the direction of separation of the vortex wakes in Fig. 1 is chosen with allowance for condition 3.
It is assumed that the fluid velocity on the contour L increases ahead of the separation points and decreases behind
them.

Let us now derive relations that define the position of the separation points of ideal fluid flow using the
proposed conditions. We first derive formulas for calculating the pressure at the points of the moving contour and
consider the issues of modeling the contour L by a vortex sheet.

3. We assume that the fluid motion outside the contour and the vortex wakes is potential. Then, the
fluid velocity v = ∇ϕ, where ϕ(x, y, t) is the velocity potential, and the dynamic pressure is determined by the
Cauchy–Lagrange integral (ignoring body forces):

p − p∞ = −ρ
[∂ϕ

∂t
+

1
2

(v2 − v2
∞)

]
. (2)

Here ρ is the fluid density, p∞ and v∞ are the pressure and velocity at infinite distance from the contour,
v2 = v2

x + v2
y = v2

s + v2
n, and ∂/∂t is the operator of differentiation over t at the fixed point (x, y).

We use integral (2) to calculate the hydrodynamic pressure at a point that moves at a velocity ve in the
Cartesian coordinates considered. The operator of differentiation with respect to t at the moving point will be
denoted by δ/δt. By the definition, we have

∂

∂t
=

δ

δt
− ve · ∇,

∂ϕ

∂t
=

δϕ

δt
− ve · ∇ϕ. (3)
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Substituting (3) into (2), we obtain

p − p∞ = −ρ
[δϕ

δt
+

1
2

(v2 − v2
∞) − ve · v

]
. (4)

Let us bring Eq. (4) to a more convenient form. To denote the tangential and normal velocity components,
we introduce the subscripts s and n, respectively. At each point of the contour L, the fluid nonpenetration condition
(v − U) ·n = 0 should be satisfied [n is the outward normal to L (see Fig. 1)]. Taking into account this condition,
we have

v2/2 − ve · v = (v2
s + v2

n)/2 − (vesvs + venvn) = [(vs − ves)2 − v2
e ]/2,

v2
e = v2

es + v2
en, ven = Un.

As a result, at the point moving at velocity ve in the Cartesian coordinates, the Cauchy–Lagrange integral (4)
becomes

p − p∞ = −ρ
{δϕ

δt
+

1
2

[
(vs − ves)2 − v2

e − v2
∞

]}
. (5)

4. We model the contour L and the vortex wakes Lwk by vortex sheets. In such modeling, it is assumed
that inside the closed airfoil contour L there is a fluid which moves together with the contour (at the points of the
contour, the velocity of this fluid is U). We denote by v+

s (s, t) and v−s (s, t) the limiting values of the fluid velocity
with approach to the contour L from the external (+) and internal (−) regions. The vortex sheet γ(s, t) that models
the contour L has an intensity equal to the discontinuity of the tangential fluid velocity: γ(s, t) = v−s (s, t)−v+

s (s, t).
Because v−s = Us, it follows that

γ(s, t) = Us(s, t) − v+
s (s, t). (6)

We note that the intensity of the vortex sheet is directed along the z axis with a positive direction of rotation
counterclockwise from the x axis to the y axis.

We use relation (6) to determine γ(s, t) in the vicinity of the flow separation points s∗1 − 0 and s∗2 + 0. At
the flow separation points, we have

v+
s (s∗1 − 0, t) = vs(s∗1 − 0, t), γ(s∗1 − 0, t) = Us(s∗1, t) − vs(s∗1 − 0, t),

v+
s (s∗2 + 0, t) = vs(s∗2 + 0, t), γ(s∗2 + 0, t) = Us(s∗2, t) − vs(s∗2 + 0, t).

(7)

At the return points s∗1 + 0 and s∗2 − 0 produced by the junction of the edges L−
w1 and L+

w2 of the cuts Lw1

and Lw2 and the contour L, the relative fluid velocity is equal to zero. Therefore,

v+
s (s∗1 + 0, t) = ves(s∗1, t) = Us(s∗1, t) + ṡ∗1(t), γ(s∗1 + 0, t) = −ṡ∗1(t),

v+
s (s∗2 − 0, t) = ves(s∗2, t) = Us(s∗2, t) + ṡ∗2(t), γ(s∗2 − 0, t) = −ṡ∗2(t).

(8)

The vortex wakes Lwk are modeled similarly. We denote the limiting fluid velocity on Lwk by v+
wkσ(σ, t)

and v−wkσ(σ, t), reckoning the arc coordinates σ along Lwk from the point of separation of the vortex wake from the
contour L. The intensity of the vortex wake γwk(σ, t) is defined by

γwk(σ, t) = v−wkσ(σ, t) − v+
wkσ(σ, t). (9)

According to the Brillouin–Villat criterion, Lwk and L have a common tangent. Therefore, for the examined
two vortex wakes, we obtain

lim
σ→0

v+
w1σ(σ, t) = vs(s∗1 − 0, t), lim

σ→0
v−w1σ(σ, t) = vs(s∗1 + 0, t),

lim
σ→0

v+
w2σ(σ, t) = −vs(s∗2 − 0, t), lim

σ→0
v−w2σ(σ, t) = −vs(s∗2 + 0, t).

(10)

Taking into account (7)–(10), the intensities of the vortices γw1(0, t) and γw2(0, t) trailing from the airfoil L

and the vortex wakes Lw1 and Lw2 are defined by the formulas

γw1(0, t) = vs(s∗1 + 0, t) − vs(s∗1 − 0, t) = γ(s∗1 − 0, t) + ṡ∗1(t),

γw2(0, t) = −vs(s∗2 + 0, t) + vs(s∗2 − 0, t) = γ(s∗2 + 0, t) + ṡ∗2(t).
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The velocities of the vortices w1(t) and w2(t) trailing to the wakes Lw1 and Lw2 are determined by the
relative velocity of vortices at σ → 0:

w1(t) = [vs(s∗1 − 0, t) + vs(s∗1 + 0)]/2 − ves(s∗1, t) = −γw1(0, t)/2,

w2(t) = −[vs(s∗1 − 0, t) + vs(s∗1 + 0)]/2 + ves(s∗1, t) = γw2(0, t)/2.
(11)

5. We now consider condition (1). Differentiating expression (5) with respect to s, we have

∂p

∂s
= −ρ

{δvs

δt
+ (vs − ves)

∂

∂s
(vs − ves) − ∂

∂s

(v2
e

2

)}
. (12)

Here ve = |ve|, where ve is the velocity of motion of the flow separation point. By the definition, the tangential ves

and normal ven components of the velocity ve are equal to

ves = Us + ṡ∗k, ven = Un. (13)

In view of (7) and (13), at the point s = s∗1 − 0, we have

δvs

δt
= U̇s(s∗1, t) − γ̇(s∗1 − 0, t),

(vs − ves)
∂

∂s
(vs − ves) = [γ(s∗1 − 0, t) + ṡ∗1(t)]

∂

∂s
γ(s, t)

∣∣∣
s=s∗1−0

,

∂

∂s

(v2
e

2

)
= [Us(s∗1, t) + ṡ∗1(t)]

∂

∂s
Us(s, t)

∣∣∣
s=s∗1

+ Un(s∗1, t)
∂

∂s
Un(s, t)

∣∣∣
s=s∗1

.

Similarly, at the other flow separation point at s = s∗2 + 0, we have

δvs

δt
= U̇s(s∗2, t) − γ̇(s∗2 + 0, t),

(vs − ves)
∂

∂s
(vs − ves) = [γ(s∗2 + 0, t) + ṡ∗2(t)]

∂

∂s
γ(s, t)

∣∣∣
s=s∗2+0

,

∂

∂s

(v2
e

2

)
= [Us(s∗2, t) + ṡ∗2(t)]

∂

∂s
Us(s, t)

∣∣∣
s=s∗2

+ Un(s∗2, t)
∂

∂s
Un(s, t)

∣∣∣
s=s∗2

.

Substituting these expressions into (12) and requiring the satisfaction of condition (1), we arrive at the following
equations for the arc coordinates s∗1(t) and s∗2(t) of the flow separation points from the smooth contour:

U̇s(s∗1, t) − γ̇(s∗1 − 0, t) + [γ(s∗1 − 0, t) + ṡ∗1(t)]
∂

∂s
γ(s, t)

∣∣∣
s=s∗1−0

− [Us(s∗1, t) + ṡ∗1(t)]
∂

∂s
Us(s, t)

∣∣∣
s=s∗1

− Un(s∗1, t)
∂

∂s
Un(s, t)

∣∣∣
s=s∗1

= 0; (14)

U̇s(s∗2, t) − γ̇(s∗2 + 0, t) + [γ(s∗2 + 0, t) + ṡ∗2(t)]
∂

∂s
γ(s, t)

∣∣∣
s=s∗2+0

−[Us(s∗2, t) + ṡ∗2(t)]
∂

∂s
Us(s, t)

∣∣∣
s=s∗2

− Un(s∗2, t)
∂

∂s
Un(s, t)

∣∣∣
s=s∗2

= 0. (15)

Equations (14) and (15) are nonlinear differential equations of the first order for s∗1(t) and s∗2(t). The initial
conditions are determined by specifying the arc coordinates s∗1(0) and s∗2(0) of the points of the contour L at which
the hydrodynamic pressure reaches the local minimal value in the steady-state flow and ṡ∗1(0) = ṡ∗2(0) = 0. The
functions Us(s, t) and Un(s, t) are specified and the intensity of the vortex sheet γ(s, t) is determined by solving the
corresponding nonlinear initial-boundary-value problem which, in turn, depends on the positions s∗1(t) and s∗2(t)
and the velocities of motion ṡ∗1(t) and ṡ∗2(t) of the flow separation points. Thus, Eqs. (14) and (15) represent only
part of the nonlinear equations that are to be solved jointly for the particular initial-boundary-value problem of the
unsteady separated flows past a smooth airfoil.

65



We note that at the points s∗1 + 0 and s∗2 − 0 on the other edge of the cuts Lw1 and, Lw2,

∂p

∂s
= −ρ

{
U̇s(s∗k, t) + s̈∗k(t) − ∂

∂s

(v2
e

2

)∣∣∣
s=s∗k

}
, k = 1, 2. (16)

An analysis of expression (16) leads to the following two remarks. First, it cannot be regarded as the equation
for the flow separation point since the coordinate s∗k(t) is related only to the law of motion of the contour. Second,
in the general case, the right side of expression (16) is different from zero. Thus, ∂p/∂s undergoes a discontinuity
in passing through the vortex wake Lw at the flow separation point, and the assumption of the continuity of ∂p/∂s

made in [10] is invalid.
6. Let us elucidate some details concerning the separation of the vortex wakes Lw1 and Lw2 from the con-

tour L. According to Kelvin’s theorem on the constancy of velocity circulation around a closed contour encompassing
the contour L and the vortex wakes,

d

dt
{Γ(t) + Γw1(t) + Γw2(t)} = 0,

Γ(t) = −
∫

L

vs(s, t) ds =
∫

L

γ(s, t) ds, Γwk(t) =
∫

Lwk

γwk(σ, t) dσ, k = 1, 2. (17)

Here Γ(t) and Γwk(t) is the counter-clockwise velocity circulation around the contours L and Lwk. We shall show
that

dΓw1

dt
= −1

2
γ2

w1(0, t),
dΓw2

dt
=

1
2

γ2
w2(0, t). (18)

The time derivative of the velocity circulation around Lwk is linked to the discontinuity of the velocity
potential at the point of separation of the vortex wake by the relation

d

dt
Γwk(t) =

δ

δt
[ϕ(s∗k − 0, t) − ϕ(s∗k + 0, t)]. (19)

In turn, the derivative of the velocity potential discontinuity with respect to t can be found from the condition
of pressure continuity in passing through Lwk. From (5) it follows that this condition can be written as

δ

δt
ϕ(s∗k − 0, t) +

1
2

[vs(s∗k − 0, t) − ves(s∗2, t)]2

=
δ

δt
ϕ(s∗k + 0, t) +

1
2

[vs(s∗k + 0, t) − ves(s∗k, t)]2. (20)

In the vicinity of the point of separation of the vortex wakes Lw1 and Lw2, we have

vs(s∗1 + 0, t) − ves(s∗1, t) = 0, vs(s∗2 − 0, t) − ves(s∗2, t) = 0,

[vs(s∗1 − 0, t) − ves(s∗1, t)]2 = γ2
w1(0, t), [vs(s∗2 + 0, t) − ves(s∗2, t)]2 = γ2

w2(0, t).

Substituting these expressions into (20), we obtain

δ

δt
[ϕ(s∗1 − 0, t) − ϕ(s∗1 + 0, t)] = −1

2
γ2

w1(0, t),

δ

δt
[ϕ(s∗2 − 0, t) − ϕ(s∗2 + 0, t)] =

1
2

γ2
w2(0, t).

(21)

From (19) and (21) it follows that the time derivatives of the velocity circulation around the vortex wakes
Lw1 and Lw2 indeed satisfy relations (18). Thus, for the separation of the two vortex wakes from the smooth
airfoil, the derivatives dΓw1/dt and dΓw2/dt have different signs, and condition (17) is satisfied for an arbitrary
time dependence of the velocity circulation around the contour L. The separation of the vortex wake Lwk is possible
only for a positive value of the separation velocity wk. From (11) it follows that for the separation of the two wakes,
it is necessary that the conditions γw1(0, t) < 0 and γw2(0, t) > 0 be satisfied.

Let us now find the features of the model of separated flow with one vortex wake trailing from the smooth
airfoil L. In the general case of motion of the airfoil, the velocity circulation cannot be a monotonic function of
time. Therefore, the model for separated flow past a smooth airfoil with one trailing vortex wake should provide
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the possibility of replacing the vortex wake Lw1 by Lw2 and vice versa. The replacement of one vortex wake by the
other occurs at the times when the time derivative of the velocity circulation vanishes [dΓ(t)/dt = 0]. In the time
interval in which dΓ(t)/dt > 0, a vortex wake of type Lw1 trails from the airfoil L and at dΓ(t)/dt < 0, a vortex
wake of type Lw2 occurs. This separated flow model was used, in particular, in [11].

It should be noted that a similar situation arises for unsteady flow of an airfoil with an angular rear lip. In
this case, the vortex wake separates from the profile along the tangent to alternatively one or the other face of the
angular lip, depending on the sign of the derivative dΓ/dt [12].

In summary, we note the main findings of the work.
1. The necessary criteria for the separation of unsteady ideal fluid flow from a closed smooth airfoil were

formulated.
2. A simple and effective formula for the calculation of the hydrodynamic pressure at the points of the

moving airfoil was derived.
3. A nonlinear differential equation of the first order was obtained for the arc coordinate of the flow separation

point, which is a function of time and depends on the velocity field around the contour and the law of its motion
is obtained.

4. An analysis was performed of the main features of the model for the unsteady separated flow past a
smooth airfoil with one and two vortex wakes.
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